Impact of Intersection Control on Battery Electric Vehicle Energy Consumption

Author:

Ahn KyounghoORCID,Park SangjunORCID,Rakha Hesham A.ORCID

Abstract

Battery electric vehicle (BEV) sales have significantly increased in recent years. They have different energy consumption patterns compared to the fuel consumption patterns of internal combustion engine vehicles (ICEVs). This study quantified the impact of intersection control approaches—roundabout, traffic signal, and two-way stop controls—on BEVs’ energy consumption. The paper systematically investigates BEVs’ energy consumption patterns compared to the fuel consumption of ICEVs. The results indicate that BEVs’ energy consumption patterns are significantly different than ICEVs’ patterns. For example, for BEVs approaching a high-speed intersection, the roundabout was found to be the most energy-efficient intersection control, while the two-way stop sign was the least efficient. In contrast, for ICEVs, the two-way stop sign was the most fuel-efficient control, while the roundabout was the least efficient. Findings also indicate that the energy saving of traffic signal coordination was less significant for BEVs compared to the fuel consumption of ICEVs since more regenerative energy is produced when partial or poorly coordinated signal plans are implemented. The study confirms that BEV regenerative energy is a major factor in energy efficiency, and that BEVs recover different amounts of energy in different urban driving environments. The study suggests that new transportation facilities and control strategies should be designed to enhance BEVs’ energy efficiency, particularly in zero emission zones.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. Tracking Transporthttps://www.iea.org/reports/tracking-transport-2019

2. Global sales of pure electric vehicles soar by 92% in H1 2019https://www.jato.com/global-sales-of-pure-electric-vehicles-soar-by-92-in-h1-2019/

3. GIS-driven analysis of e-mobility in urban areas: An evaluation of the impact on the electric energy grid

4. Power-based electric vehicle energy consumption model: Model development and validation

5. The effects of small roundabouts on emissions and fuel consumption: a case study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3