Development of Weighting Scheme for Indoor Air Quality Model Using a Multi-Attribute Decision Making Method

Author:

Piasecki MichałORCID,Kostyrko KrystynaORCID

Abstract

When planning the energy demand of ventilation, proper consideration should be given to the possible scenarios of indoor air quality and pollutant concentrations. The purpose of the present research is to create a practical method of prioritising indoor air pollutants, considering technical, economical and health aspects, in the Indoor Air Quality model (IAQ). In order to find the global weights for the combined IAQindex model sub-elements (in practice, air pollutant concentrations), the Multi-Criteria Decision Making (MCDM) approach is used. The authors have approached the problem of a weighting scheme in a model such as the complex model of the IAQ related to making decisions with many criteria and with the Multi-Attribute Decision Making MADM approach (specifically MCDM). The basis of the MADM method is a decision matrix constructed rationally by the authors, which includes six attributes: actual indoor air carbon dioxide concentration, total volatile organic compounds (TVOCs) and formaldehyde HCHO concentration, and their anthropogenic and construction product emissions to the indoor environment. The decision model of IAQindex includes five alternatives (possible situations), and the combination of pollutant concentration attributes with additional emission attributes is related to the indoor environment under specific situation. For defining the weights of criteria, the authors provide objective approaches: (i) entropy-based approach considering measuring the amount of information, and (ii) CRITIC, a statistic-based approach. The value of the presented method, i.e., the determination of global weights for IAQ components, is shown as a practical application to determine IAQ and the Indoor Environmental Quality (IEQ) index for an office building used as a case study.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3