An Inspired Machine-Learning Algorithm with a Hybrid Whale Optimization for Power Transformer PHM

Author:

Zhang Wei,Yang XiaohuiORCID,Deng Yeheng,Li Anyi

Abstract

The burgeoning prognostic and health management (PHM) engineering technology with superior performance has lately received extensive attention in the academic circle. Nevertheless, the various types of faults of the power transformer often lead to less accurate predictions and the instability of the power system. To address these problems, a power transformer PHM model with a hybrid machine learning method-approach is proposed in this paper. The model uses intelligent sensors to obtain dissolved gas analysis (DGA) data for fault diagnosis of the power transformer system, so as to compress the complexity of features (gas types) in the power transformer. In particular, to enhance the robustness of the model, we adopt a modified differential evolution whale optimization algorithm (MDE-WOA) to optimize the probabilistic neural network (PNN), namely, the classification performance of the model is improved by updating the smoothing factor ( σ ) of PNN. In addition, compared with other optimization algorithms, the MDE-WOA algorithm has a lower complexity and more stable optimization process. Finally, we evaluate this model with real world data from the power transformer sensor in Jiangxi province, China. The results indicated that the proposed algorithm could achieve the highest diagnostic accuracy in the fourth iteration, its accuracy having reached 98.86%. Therefore, the proposed PNN parameter optimization meta heuristic algorithm could effectively enhance the accuracy and efficiency of the power transformer fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3