Multi-Criteria Examination of Power-to-Gas Pathways under Stochastic Preferences

Author:

Walker Sean,Al-Zakwani Suadd,Maroufmashat Azadeh,Fowler Michael,Elkamel Ali

Abstract

Power-to-gas is an energy storage and vector technology which can utilize off-peak power, assist in the integration of renewable power and provide needed fuel for industry and transportation. Further, power-to-gas is a useful technology for balancing surplus baseload and renewable energy generation with demand. There are numerous applications of power-to-gas in Europe, where renewable power is used to generate hydrogen for numerous applications. Examining each of these power-to-gas pathways across quantitative and qualitative criteria, this paper utilizes the stochastic fuzzy analytic hierarchy process to determine criteria weights. These weights are then fed to a multiple criteria decision analysis tool to determine the viability of each pathway for investors and policy makers. A sensitivity analysis is carried out by reprioritizing the criteria and re-evaluating the multiple criteria analysis. The two pathways that score highest under multiple criteria rankings are power-to-gas to mobility-fuel and power-to-gas-to-power, due to their established technologies, lower costs and environmental performance. By extension, both of these power-to-gas pathways are the most appropriate ways for this technology to be implemented, due to their combination of public familiarity, emissions reductions, and developed, available technologies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference59 articles.

1. Renewables 2017—Analysis and Forecasts to 2022,2017

2. Energy Output by Fuel Type in Ontariohttp://ieso-public.sharepoint.com/Pages/Power-Data/Supply.aspx

3. Benchmarking and selection of Power-to-Gas utilizing electrolytic hydrogen as an energy storage alternative

4. EPRI Project Manager Electricity Energy Storage Technology Options;Rastler,2010

5. Electricity Storage Handbook in Collaboration with NCREA: DOE/EPRI 2013,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3