Abstract
The paper presents an analysis of local and global forces acting on the ferromagnetic material of a modulator in a co-axial magnetic gear, taking several design variants and the impact of loading into account. The analyses include a modulator with cores manufactured from a soft-magnetic composite material and two variants made from electrical steel with laminations stacked in different directions. Variations of local forces acting on individual pole pieces of the modulator are analyzed at different loads, showing that the force spectra are subject to significant variation with an increasing load. The presented magnetostatic analyses are extended by structural analysis that provides estimation of stress and displacement for the modulator assembled from additively manufactured acrylonitrile butadiene styrene (ABS)-plastic parts. The analysis carried out for the least favorable design case of the magnetic circuit of the modulator shows that an application of the technology is significantly restricted by the magnetic gear torque volumetric density. Some changes to the modulator mechanical design are proposed in the paper to mitigate the drawbacks of this technology.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献