Security Assessment and Coordinated Emergency Control Strategy for Power Systems with Multi-Infeed HVDCs

Author:

Zhang QiufangORCID,Shi Zheng,Wang Ying,He Jinghan,Xu YinORCID,Li Meng

Abstract

Short-circuit faults in a receiving-end power system can lead to blocking events of the feed-in high-voltage direct-current (HVDC) systems, which may further result in system instability. However, security assessment methods based on the transient stability (TS) simulation can hardly catch the fault propagation phenomena between AC and DC subsystems. Moreover, effective emergency control strategies are needed to prevent such undesired cascading events. This paper focuses on power systems with multi-infeed HVDCs. An on-line security assessment method based on the electromagnetic transient (EMT)-TS hybrid simulation is proposed. DC and AC subsystems are modeled in EMTDC/PSCAD and PSS/E, respectively. In this way, interactions between AC and DC subsystems can be well reflected. Meanwhile, high computational efficiency is maintained for the on-line application. In addition, an emergency control strategy is developed, which coordinates multiple control resources, including HVDCs, pumped storages, and interruptible loads, to maintain the security and stability of the receiving-end system. The effectiveness of the proposed methods is verified by numerical simulations on two actual power systems in China. The simulation results indicate that the EMT-TS hybrid simulation can accurately reflect the fault propagation phenomena between AC and DC subsystems, and the coordinated emergency control strategy can work effectively to maintain the security and stability of systems.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3