A Text Mining Approach in the Classification of Free-Text Cancer Pathology Reports from the South African National Health Laboratory Services

Author:

Achilonu Okechinyere J.ORCID,Olago VictorORCID,Singh ElviraORCID,Eijkemans René M. J. C.,Nimako Gideon,Musenge Eustasius

Abstract

A cancer pathology report is a valuable medical document that provides information for clinical management of the patient and evaluation of health care. However, there are variations in the quality of reporting in free-text style formats, ranging from comprehensive to incomplete reporting. Moreover, the increasing incidence of cancer has generated a high throughput of pathology reports. Hence, manual extraction and classification of information from these reports can be intrinsically complex and resource-intensive. This study aimed to (i) evaluate the quality of over 80,000 breast, colorectal, and prostate cancer free-text pathology reports and (ii) assess the effectiveness of random forest (RF) and variants of support vector machine (SVM) in the classification of reports into benign and malignant classes. The study approach comprises data preprocessing, visualisation, feature selections, text classification, and evaluation of performance metrics. The performance of the classifiers was evaluated across various feature sizes, which were jointly selected by four filter feature selection methods. The feature selection methods identified established clinical terms, which are synonymous with each of the three cancers. Uni-gram tokenisation using the classifiers showed that the predictive power of RF model was consistent across various feature sizes, with overall F-scores of 95.2%, 94.0%, and 95.3% for breast, colorectal, and prostate cancer classification, respectively. The radial SVM achieved better classification performance compared with its linear variant for most of the feature sizes. The classifiers also achieved high precision, recall, and accuracy. This study supports a nationally agreed standard in pathology reporting and the use of text mining for encoding, classifying, and production of high-quality information abstractions for cancer prognosis and research.

Funder

GlaxoSmithKline

Publisher

MDPI AG

Subject

Information Systems

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3