Multi-View Metal Parts Pose Estimation Based on a Single Camera

Author:

Chen Chen1,Jiang Xin1ORCID

Affiliation:

1. Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Pose estimation of metal parts plays a vital role in industrial grasping areas. It is challenging to obtain complete point clouds of metal parts because of their reflective properties. This study introduces an approach for recovering the 6D pose of CAD-known metal parts from images captured by a single RGB camera. The proposed strategy only requires RGB images without depth information. The core idea of the proposed method is to use multiple views to estimate the metal parts’ pose. First, the pose of metal parts is estimated in the first view. Second, ray casting is employed to simulate additional views with the corresponding status of the metal parts, enabling the calculation of the camera’s next best viewpoint. The camera, mounted on a robotic arm, is then moved to this calculated position. Third, this study integrates the known camera transformations with the poses estimated from different viewpoints to refine the final scene. The results of this work demonstrate that the proposed method effectively estimates the pose of shiny metal parts.

Publisher

MDPI AG

Reference40 articles.

1. Liu, J., Sun, W., Yang, H., Liu, C., Zhang, X., and Mian, A. (2024). Domain-Generalized Robotic Picking via Contrastive Learning-Based 6-D Pose Estimation. IEEE Trans. Ind. Inform., 1–12.

2. 6D Pose Estimation Based on 3D Edge Binocular Reprojection Optimization for Robotic Assembly;Li;IEEE Robot. Autom. Lett.,2023

3. Instance segmentation based 6D pose estimation of industrial objects using point clouds for robotic bin-picking;Zhuang;Robot. Comput.-Integr. Manuf.,2023

4. Transpose: 6d object pose estimation with geometry-aware transformer;Lin;Neurocomputing,2024

5. Li, G., Li, Y., Ye, Z., Zhang, Q., Kong, T., Cui, Z., and Zhang, G. (2023, January 6–9). Generative category-level shape and pose estimation with semantic primitives. Proceedings of the Conference on Robot Learning, PMLR, Atlanta, GA, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3