A Video Mosaicing-Based Sensing Method for Chicken Behavior Recognition on Edge Computing Devices

Author:

Teterja Dmitrij1,Garcia-Rodriguez Jose1ORCID,Azorin-Lopez Jorge1ORCID,Sebastian-Gonzalez Esther2,Nedić Daliborka3,Leković Dalibor3,Knežević Petar3,Drajić Dejan34ORCID,Vukobratović Dejan5

Affiliation:

1. Department of Computer Science and Technology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain

2. Department of Ecology, University of Alicante, 03690 San Vicente del Raspeig, Alicante, Spain

3. DunavNet DOO, Bulevar Oslobođenja 133/2, 21000 Novi Sad, Serbia

4. Paviljon Računskog Centra, The Department of Telecommunications, School of Electrical Engineering, University of Belgrade, Bulevar kralja Aleksandra 73, 11120 Belgrade, Serbia

5. Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

Abstract

Chicken behavior recognition is crucial for a number of reasons, including promoting animal welfare, ensuring the early detection of health issues, optimizing farm management practices, and contributing to more sustainable and ethical poultry farming. In this paper, we introduce a technique for recognizing chicken behavior on edge computing devices based on video sensing mosaicing. Our method combines video sensing mosaicing with deep learning to accurately identify specific chicken behaviors from videos. It attains remarkable accuracy, achieving 79.61% with MobileNetV2 for chickens demonstrating three types of behavior. These findings underscore the efficacy and promise of our approach in chicken behavior recognition on edge computing devices, making it adaptable for diverse applications. The ongoing exploration and identification of various behavioral patterns will contribute to a more comprehensive understanding of chicken behavior, enhancing the scope and accuracy of behavior analysis within diverse contexts.

Funder

European Regional Development Fund

HORIZON-MSCA-2021-SE-0

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3