VARS and HDMR Sensitivity Analysis of Groundwater Flow Modeling through an Alluvial Aquifer Subject to Tidal Effects

Author:

Samper Javier1ORCID,Sobral Brais1ORCID,Pisani Bruno1ORCID,Mon Alba1ORCID,López-Vázquez Carlos2,Samper-Pilar Javier1

Affiliation:

1. Interdisciplinary Center of Chemistry and Biology (CICA), Civil Engineering, Campus de Elviña, University of A Coruña, 15071 A Coruña, Spain

2. LatinGEO Lab IGM+ORT, Universidad ORT Uruguay, Montevideo 11100, Uruguay

Abstract

Groundwater flow and transport models are essential tools for assessing and quantifying the migration of organic contaminants at polluted sites. Uncertainties in the hydrodynamic and transport parameters of the aquifer have a significant effect on model predictions. Uncertainties can be quantified with advanced sensitivity methods such as Sobol’s High Dimensional Model Reduction (HDMR) and Variogram Analysis of Response Surfaces (VARS). Here we present the application of VARS and HDMR to assess the global sensitivities of the outputs of a transient groundwater flow model of the Gállego alluvial aquifer which is located downstream of the Sardas landfill in Huesca (Spain). The aquifer is subject to the tidal effects caused by the daily oscillations of the water level in the Sabiñánigo reservoir. Global sensitivities are analyzed for hydraulic heads, aquifer/reservoir fluxes, groundwater Darcy velocity, and hydraulic head calibration metrics. Input parameters include aquifer hydraulic conductivities and specific storage, aquitard vertical hydraulic conductivities, and boundary inflows and conductances. VARS, HDMR, and graphical methods agree to identify the most influential parameters, which for most of the outputs are the hydraulic conductivities of the zones closest to the landfill, the vertical hydraulic conductivity of the most permeable zones of the aquitard, and the boundary inflow coming from the landfill. The sensitivity of heads and aquifer/reservoir fluxes with respect to specific storage change with time. The aquifer/reservoir flux when the reservoir level is high shows interactions between specific storage and aquitard conductivity. VARS and HDMR parameter rankings are similar for the most influential parameters. However, there are discrepancies for the less relevant parameters. The efficiency of VARS was demonstrated by achieving stable results with a relatively small number of simulations.

Funder

EMGRISA

Ebro Water District

Xunta de Galicia

Spanish Ministry of Science and Innovation

Galician Regional Government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3