Therapeutic Effect of Superficial Scalp Hypothermia on Chemotherapy-Induced Alopecia in Breast Cancer Survivors

Author:

Mokbel Kefah1,Kodresko Alevtina2ORCID,Trembley Jon3,Jouhara Hussam24ORCID

Affiliation:

1. The London Breast Institute, Princess Grace Hospital, London W1U 5NY, UK

2. Heat Pipe and Thermal Management Research Group, College of Engineering, Design and Physical Sciences, Brunel University, London UB8 3PH, UK

3. Air Products PLC, Hersham Place Technology Park, Molesey Road, Surrey KT12 4RZ, UK

4. Vytautas Magnus University, Studentu Street 11, Kaunas District, LT-53362 Akademija, Lithuania

Abstract

Alopecia is a common adverse effect of neoadjuvant or adjuvant chemotherapy in patients with early breast cancer. While hair typically regrows over time, more than 40% of patients continue to suffer from permanent partial alopecia, significantly affecting body image, psychological well-being, and quality of life. This concern is a recognized reason why some breast cancer patients decline life-saving chemotherapy. It is critical for healthcare professionals to consider the impact of this distressing side effect and adopt supportive measures to mitigate it. Among the various strategies investigated to reduce chemotherapy-induced alopecia (CIA), scalp cooling has emerged as the most effective. This article reviews the pathophysiology of CIA and examines the efficacy of different scalp cooling methods. Scalp cooling has been shown to reduce the incidence of CIA, defined as less than 50% hair loss, by 50% in patients receiving chemotherapy. It is associated with high patient satisfaction and does not significantly increase the risk of scalp metastasis or compromise overall survival. Promising new scalp cooling technologies, such as cryogenic nitrogen oxide cryotherapy, offer the potential to achieve and maintain lower scalp temperatures, potentially enhancing therapeutic effects. Further investigation into these approaches is warranted. Research on CIA is hindered by significant heterogeneity and the lack of standardised methods for assessing hair loss. To advance the field, further interdisciplinary research is crucial to develop preclinical models of CIA, establish a uniform, internationally accepted and standardised classification system, and establish an objective, personalised prognosis monitoring system.

Funder

Air Products PLC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3