Exploration of Optimal Powertrain Design Using Realistic Load Profiles

Author:

Pathak AdityaORCID,Sethuraman GaneshORCID,Krapf Sebastian,Ongel AybikeORCID,Lienkamp Markus

Abstract

The electrification of bus-based public transportation contributes to the goal of reducing the adverse environmental impacts caused by urban transportation. However, the penetration of electric vehicles has been slow due to their lower vehicle range and total costs in comparison to vehicles driven by internal combustion engines. By improving the powertrain efficiency, the total costs can be reduced for the same vehicle range. Therefore, this paper proposes a holistic design exploration approach to investigate and identify the optimal powertrain concept for electric city buses based on the component costs and energy consumption costs. The load profiles of speed, slope, and passenger occupancy profiles are derived for a selected bus route in Singapore, which is used in a powertrain design exploration for a 30-passenger vehicle. Six different powertrain architectures are analyzed, together with single and multi-speed gearbox configurations, to identify the optimal powertrain architecture and the resulting component sizes. The powertrain configurations are further analyzed in terms of their influence on the vehicle characteristics and total costs. Multi-motor configurations were found to have better vehicle characteristics and lower total costs in comparison to single rear motor configurations. Concepts with motors on the front and a rear axle could shift the load points to a higher efficiency region, resulting in lower energy consumption and energy costs. The optimal powertrain concept was a fixed-speed two-motor configuration, with a booster motor on the front axle and a motor on the rear axle.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3