Our Experience of Using Thermally Recycled Silica Gel in a Teaching and Small Research Laboratory Setting

Author:

,Abdulla Manhal,Al-Hemyari Abdullah,Bufaroosha Muna,Ramachandran Tholkappiyan,Hamed Fathalla,Thiemann Thies,

Abstract

Organic synthetic research laboratories generate a large amount of waste. Some of the waste is the silica gel used as the stationary phase in column chromatographic separations. Here, the authors discuss the possibility of recycling silica gel wastes thermally at 600 °C, at which temperature the remnant adsorbed organic material combusts. It could be shown that the recycled silica gel maintains its adsorption characteristics. The process could be repeated 10 times with any discernable deterioration of the separation properties of the silica gel for the product mixture of the reactions used in this research. In those cases where triphenyl oxide remained on the silica gel after the separation of the reaction mixture, such as after Wittig olefination and Appel-type reactions, an increase of phosphorus content was noted in the silica gel after thermal treatment. The original and recycled silica gel was partly analyzed by Brunauer-Emmett-Teller (BET) surface measurements, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and in inductively coupled plasma optical emission spectroscopy (ICP-OES). The process significantly reduced waste production in our laboratory and also led to a reduction in costs associated with acquiring new silica gel and with the management and the disposal of spent silica gel. A simple environmental impact assessment has been carried out.

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3