Recognition of Upper Limb Action Intention Based on IMU

Author:

Cui Jian-Wei,Li Zhi-GangORCID,Du Han,Yan Bing-Yan,Lu Pu-Dong

Abstract

Using motion information of the upper limb to control the prosthetic hand has become a hotspot of current research. The operation of the prosthetic hand must also be coordinated with the user’s intention. Therefore, identifying action intention of the upper limb based on motion information of the upper limb is key to controlling the prosthetic hand. Since a wearable inertial sensor bears the advantages of small size, low cost, and little external environment interference, we employ an inertial sensor to collect angle and angular velocity data during movement of the upper limb. Aiming at the action classification for putting on socks, putting on shoes and tying shoelaces, this paper proposes a recognition model based on the Dynamic Time Warping (DTW) algorithm of the motion unit. Based on whether the upper limb is moving, the complete motion data are divided into several motion units. Considering the delay associated with controlling the prosthetic hand, this paper only performs feature extraction on the first motion unit and the second motion unit, and recognizes action on different classifiers. The experimental results reveal that the DTW algorithm based on motion unit bears a higher recognition rate and lower running time. The recognition rate reaches as high as 99.46%, and the average running time measures 8.027 ms. In order to enable the prosthetic hand to understand the grasping intention of the upper limb, this paper proposes a Generalized Regression Neural Network (GRNN) model based on 10-fold cross-validation. The motion state of the upper limb is subdivided, and the static state is used as the sign of controlling the prosthetic hand. This paper applies a 10-fold cross-validation method to train the neural network model to find the optimal smoothing parameter. In addition, the recognition performance of different neural networks is compared. The experimental results show that the GRNN model based on 10-fold cross-validation exhibits a high accuracy rate, capable of reaching 98.28%. Finally, the two algorithms proposed in this paper are implemented in an experiment of using the prosthetic hand to reproduce an action, and the feasibility and practicability of the algorithm are verified by experiment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference29 articles.

1. The Modeling of Inverse Kinematics for 5 DOF Manipulator

2. Human-Machine Interfaces in Upper-Limb Prosthesis Control: A Survey of Techniques for Preprocessing and Processing of Biosignals;Chakaveh;IEEE Signal Process. Mag.,2021

3. Combining Bioimpedance and EMG Measurements for Reliable Muscle Contraction Detection

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3