Energy Expenditure Estimation in Children, Adolescents and Adults by Using a Respiratory Magnetometer Plethysmography System and a Deep Learning Model

Author:

Zhou FenfenORCID,Yin Xiaojian,Hu Rui,Houssein Aya,Gastinger Steven,Martin Brice,Li Shanshan,Prioux Jacques

Abstract

Purpose: Energy expenditure is a key parameter in quantifying physical activity. Traditional methods are limited because they are expensive and cumbersome. Additional portable and cheaper devices are developed to estimate energy expenditure to overcome this problem. It is essential to verify the accuracy of these devices. This study aims to validate the accuracy of energy expenditure estimation by a respiratory magnetometer plethysmography system in children, adolescents and adults using a deep learning model. Methods: Twenty-three healthy subjects in three groups (nine adults (A), eight post-pubertal (PP) males and six pubertal (P) females) first sat or stood for six minutes and then performed a maximal graded test on a bicycle ergometer until exhaustion. We measured energy expenditure, oxygen uptake, ventilatory thresholds 1 and 2 and maximal oxygen uptake. The respiratory magnetometer plethysmography system measured four chest and abdomen distances using magnetometers sensors. We trained the models to predict energy expenditure based on the temporal convolutional networks model. Results: The respiratory magnetometer plethysmography system provided accurate energy expenditure estimation in groups A (R2 = 0.98), PP (R2 = 0.98) and P (R2 = 0.97). The temporal convolutional networks model efficiently estimates energy expenditure under sitting, standing and high levels of exercise intensities. Conclusion: Our results proved the respiratory magnetometer plethysmography system’s effectiveness in estimating energy expenditure for different age populations across various intensities of physical activity.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3