Simulating Arbitrary Electrode Reversals in Standard 12-lead ECG

Author:

Krasteva ,Jekova ,Schmid

Abstract

Electrode reversal errors in standard 12-lead electrocardiograms (ECG) can produce significant ECG changes and, in turn, misleading diagnoses. Their detection is important but mostly limited to the design of criteria using ECG databases with simulated reversals, without Wilson's central terminal (WCT) potential change. This is, to the best of our knowledge, the first study that presents an algebraic transformation for simulation of all possible ECG cable reversals, including those with displaced WCT, where most of the leads appear with distorted morphology. The simulation model of ECG electrode swaps and the resultant WCT potential change is derived in the standard 12-lead ECG setup. The transformation formulas are theoretically compared to known limb lead reversals and experimentally proven for unknown limb–chest electrode swaps using a 12-lead ECG database from 25 healthy volunteers (recordings without electrode swaps and with 5 unicolor pairs swaps, including red (right arm—C1), yellow (left arm—C2), green (left leg (LL) —C3), black (right leg (RL)—C5), all unicolor pairs). Two applications of the transformation are shown to be feasible: ‘Forward’ (simulation of reordered leads from correct leads) and ‘Inverse’ (reconstruction of correct leads from an ECG recorded with known electrode reversals). Deficiencies are found only when the ground RL electrode is swapped as this case requires guessing the unknown RL electrode potential. We suggest assuming that potential to be equal to that of the LL electrode. The ‘Forward’ transformation is important for comprehensive training platforms of humans and machines to reliably recognize simulated electrode swaps using the available resources of correctly recorded ECG databases. The ‘Inverse’ transformation can save time and costs for repeated ECG recordings by reconstructing the correct lead set if a lead swap is detected after the end of the recording. In cases when the electrode reversal is unknown but a prior correct ECG recording of the same patient is available, the ‘Inverse’ transformation is tested to detect the exact swapping of the electrodes with an accuracy of (96% to 100%).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3