Ni2+ and Cu2+ Biosorption by EPS-Producing Serratia plymuthica Strains and Potential Bio-Catalysis of the Organo–Metal Complexes

Author:

Zanetti Rocco,Zecchin SarahORCID,Colombo Milena,Borgonovo GigliolaORCID,Mazzini StefaniaORCID,Scaglioni Leonardo,Facchetti GiorgioORCID,Gandolfi RaffaellaORCID,Rimoldi IsabellaORCID,Cavalca LuciaORCID

Abstract

In this study, a biosorption system for nickel (Ni2+) and copper (Cu2+) removal by selected exopolymeric substance-producing bacterial strains was evaluated from the perspective of water remediation. A preliminary screening in a biofilm-based filtration system allowed the selection of two best-performing Serratia plymuthica strains for specific Ni2+ and Cu2+ removal from synthetic solutions, as well as the definition of the optimal growth conditions. Further tests were conducted in a planktonic cell system in order to evaluate: (i) the effect of contact time, (ii) the effect of initial metal concentration, and (iii) the effect of biomass dose. S. plymuthica strain SC3I(2) was able to remove 89.4% of Ni2+ from a 50 mg L−1 solution, and showed maximum biosorption capacity of 33.5 mg g−1, while S. plymuthica strain As3-5a(5) removed up to 91.5% of Cu2+ from a 200 mg L−1 solution, yielding maximum biosorption capacity of 80.5 mg g−1. Adsorption equilibria of both metals were reached within 30 min, most of the process occurring in the first 2–4 min. Only Ni2+ biosorption data were adequately described by Langmuir and Freundlich isothermal models, as Cu2+ was in part subjected to complexation on the exopolymeric substances. The capability of the exopolymeric substances to stably coordinate a transition metal as Cu2+ offers the possibility of the eco-friendly re-use of these new hybrid systems as catalysts for application in addition reaction of B2(pin)2 on α,β-unsaturated chalcones with good results. The systems formed by biomass and Ni2+ were instead evaluated in transfer hydrogenation of imines. The biosorption performances of both strains indicate that they have the potential to be exploited in bioremediation technologies and the obtained organo–metal complexes might be valorized for biocatalytic purposes.

Funder

Fondazione CARIPLO—Circular Economy 2020

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Green technologies for the remediation of heavy metals in the environment;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

2. The status of scientific development on the application of biosorption of heavy metals at laboratory and pilot-scale: a review;DESALINATION AND WATER TREATMENT;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3