Modeling Tree-like Heterophily on Symmetric Matrix Manifolds

Author:

Wu Yang1,Hu Liang1,Hu Juncheng1

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

Abstract

Tree-like structures, characterized by hierarchical relationships and power-law distributions, are prevalent in a multitude of real-world networks, ranging from social networks to citation networks and protein–protein interaction networks. Recently, there has been significant interest in utilizing hyperbolic space to model these structures, owing to its capability to represent them with diminished distortions compared to flat Euclidean space. However, real-world networks often display a blend of flat, tree-like, and circular substructures, resulting in heterophily. To address this diversity of substructures, this study aims to investigate the reconstruction of graph neural networks on the symmetric manifold, which offers a comprehensive geometric space for more effective modeling of tree-like heterophily. To achieve this objective, we propose a graph convolutional neural network operating on the symmetric positive-definite matrix manifold, leveraging Riemannian metrics to facilitate the scheme of information propagation. Extensive experiments conducted on semi-supervised node classification tasks validate the superiority of the proposed approach, demonstrating that it outperforms comparative models based on Euclidean and hyperbolic geometries.

Funder

Central University Basic Scientific Research Fund

Key scientific and technological R&D Plan of Jilin Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3