Noncontact Sleeping Heartrate Monitoring Method Using Continuous-Wave Doppler Radar Based on the Difference Quadratic Sum Demodulation and Search Algorithm

Author:

Chen Xiao,Ni Xuxiang

Abstract

Continuous-wave doppler radar, which has the advantages of simple structure, low cost, and low power consumption, has attracted extensive attention in the detection of human vital signs. However, while respiration and heartbeat signals are mixed in the echo phase, the amplitude difference between the two signals is so large that it becomes difficult to measure the heartrate (HR) from the interference of respiration stably and accurately. In this paper, the difference quadratic sum demodulation method is proposed. According to the mixed characteristics of respiration and heartbeat after demodulation, the heartbeat features can be extracted with the help of the easy-to-detect breathing signal; combined with the constrained nearest neighbor search algorithm, it can realize sleeping HR monitoring overnight without body movements restraint. Considering the differences in vital-sign characteristics of different individuals and the irregularity of sleep movements, 54 h of sleep data for nine nights were collected from three subjects, and then compared with ECG-based HR reference equipment. After excluding the periods of body turning over, the HR error was within 10% for more than 70% of the time. Experiments confirmed that this method, as a tool for long-term HR monitoring, can play an important role in sleeping monitoring, smart elderly care, and smart homes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. Doppler Cardiogram: A Remote Detection of Human Heart Activities

2. Estimation of Human Body Vital Signs Based on 60 GHz Doppler Radar Using a Bound-Constrained Optimization Algorithm

3. Robust Overnight Monitoring of Human Vital Signs by a Non-contact Respiration and Heartbeat Detector;Li;Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society,2006

4. Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea Diagnosis: A Comprehensive Review

5. Internet of Things (IoT) Privacy–Protected, Fall-Detection System for the Elderly Using the Radar Sensors and Deep Learning;Chuma;Proceedings of the 2020 IEEE International Smart Cities Conference (ISC2),2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3