Abstract
This study proposed a control method, a data-driven predictive control (DDPC), for the hand exoskeleton used for active, passive, and resistive rehabilitation. DDPC is a model-free approach based on past system data. One of the strengths of DDPC is that constraints of states can be added to the controller while performing the controller design. These features of the control algorithm eliminate an essential problem for rehabilitation robots in terms of easy customization and safe repetitive rehabilitation tasks that can be planned within certain constraints. Experiments were carried out with a designed hand rehabilitation system under repetitive and various therapy tasks. Real-time experiment results demonstrate the feasibility and efficiency of the proposed control approach to rehabilitation systems.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献