Securing SCADA Energy Management System under DDos Attacks Using Token Verification Approach

Author:

Yang Yu-Sheng,Lee Shih-HsiungORCID,Chen Wei-Che,Yang Chu-Sing,Huang Yuen-MinORCID,Hou Ting-Wei

Abstract

The advanced connection requirements of industrial automation and control systems have sparked a new revolution in the Industrial Internet of Things (IIoT), and the Supervisory Control and Data Acquisition (SCADA) network has evolved into an open and highly interconnected network. In addition, the equipment of industrial electronic devices has experienced complete systemic integration by connecting with the SCADA network, and due to the control and monitoring advantages of SCADA, the interconnectivity and working efficiency among systems have been tremendously improved. However, it is inevitable that the SCADA system cannot be separated from the public network, which indicates that there are concerns over cyber-attacks and cyber-threats, as well as information security breaches, in the SCADA network system. According to this context, this paper proposes a module based on the token authentication service to deter attackers from performing distributed denial-of-service (DDoS) attacks. Moreover, a simulated experiment has been conducted in an energy management system in the actual field, and the experimental results have suggested that the security defense architecture proposed by this paper can effectively improve security and is compatible with real field systems.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Supervisory Control and Data Acquisition;Boyer,2009

2. Programmable Logic Controllers Principles and Applications;Webb,2002

3. The SCADA system applications in management of Yuvacik Dam and Reservoir

4. Unfairness of Random Access with Collision Avoidance in Industrial Internet of Things Networks

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3