Abstract
Industrial Wireless Sensor Networks (IWSN) are becoming increasingly popular in production environments due to their ease of deployment, low cost and energy efficiency. However, the complexity and accuracy demanded by these environments requires that IWSN implement quality of service mechanisms that allow them to operate with high determinism. For this reason, the IEEE 802.15.4e standard incorporates the Time Slotted Channel Hopping (TSCH) protocol which reduces interference and increases the reliability of transmissions. This standard does not specify how time resources are allocated in TSCH scheduling, leading to multiple scheduling solutions. Schedulers can be classified as autonomous, distributed and centralised. The first two have prevailed over the centralised ones because they do not require high signalling, along with the advantages of ease of deployment and high performance. However, the increased QoS requirements and the diversity of traffic flows that circulate through the network in today’s Industry 4.0 environment require strict, dynamic control to guarantee parameters such as delay, packet loss and deadline, independently for each flow. That cannot always be achieved with distributed or autonomous schedulers. For this reason, it is necessary to use centralised protocols with a disruptive approach, such as Software Defined Networks (SDN). In these, not only is the control of the MAC layer centralised, but all the decisions of the nodes that make up the network are configured by the controller based on a global vision of the topology and resources, which allows optimal decisions to be made. In this work, a comparative analysis is made through simulation and a testbed of the different schedulers to demonstrate the benefits of a fully centralized approach such as SDN. The results obtained show that with SDN it is possible to simplify the management of multiple flows, without the problems of centralised schedulers. SDN maintains the Packet Delivery Ratio (PDR) levels of other distributed solutions, but in addition, it achieves greater determinism with bounded end-to-end delays and Deadline Satisfaction Ratio (DSR) at the cost of increased power consumption.
Funder
DAIS (https://dais-project.eu/) which has received600 funding from the ECSEL Joint Undertaking (JU) u
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献