Burned Area Classification Based on Extreme Learning Machine and Sentinel-2 Images

Author:

Gajardo JohnORCID,Mora MarcoORCID,Valdés-Nicolao Guillermo,Carrasco-Benavides MarcosORCID

Abstract

Sentinel-2 satellite images allow high separability for mapping burned and unburned areas. This problem has been extensively addressed using machine-learning algorithms. However, these need a suitable dataset and entail considerable training time. Recently, extreme learning machines (ELM) have presented high precision in classification and regression problems but with low computational cost. This paper proposes evaluating ELM to map burned areas and compare them with other machine-learning algorithms broadly used. Several indices, metrics and training times were used to assess the performance of the algorithms. Considering the average of datasets, the best performance was obtained by random forest (DICE = 0.93; omission and commission = 0.08) and ELM (DICE = 0.90; omission and commission = 0.07). The training time for the best model was from ELM (1.45 s) and logistic regression (1.85 s). According to results, ELM was the best burned-area classification algorithm, considering precision and training time, evidencing great potential to map burned areas at global scales with medium-high spatial resolution images. This information is essential to fire-risk systems and burned-area records used to design prevention and fire-combat strategies, and it provides valuable knowledge on the effect of fires on the landscape and atmosphere.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference62 articles.

1. Detección y análisis de incendios forestales desde satélites de teledetección;Salinero;Rev. Real Acad. Cienc. Exactas FíSicas Nat.,2009

2. Trends in global wildfire potential in a changing climate

3. A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data

4. Potential fire applications from MSG/SEVIRI observations. Technical Memorandum No 7;Pereira;Darmstadt Eumetsat,2001

5. BAIS2: Burned Area Index for Sentinel-2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3