Line Segment Matching Fusing Local Gradient Order and Non-Local Structure Information

Author:

Cai Weibo,Cheng Jintao,Deng Juncan,Zhou Yubin,Xiao Hua,Zhang Jian,Luo KaiqingORCID

Abstract

Line segment matching is essential for industrial applications such as scene reconstruction, pattern recognition, and VSLAM. To achieve good performance under the scene with illumination changes, we propose a line segment matching method fusing local gradient order and non-local structure information. This method begins with intensity histogram multiple averaging being utilized for adaptive partitioning. After that, the line support region is divided into several sub-regions, and the whole image is divided into a few intervals. Then the sub-regions are encoded by local gradient order, and the intervals are encoded by non-local structure information of the relationship between the sampled points and the anchor points. Finally, two histograms of the encoded vectors are, respectively, normalized and cascaded. The proposed method was tested on the public datasets and compared with previous methods, which are the line-junction-line (LJL), the mean-standard deviation line descriptor (MSLD) and the line-point invariant (LPI). Experiments show that our approach has better performance than the representative methods in various scenes. Therefore, a tentative conclusion can be drawn that this method is robust and suitable for various illumination changes scenes.

Funder

the National Science Foundation of China (NSFC) - Guangdong big data Science Center Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Line Segments Matching Algorithm for BIM Applications;2022 IEEE International Workshop on Metrology for Living Environment (MetroLivEn);2022-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3