Enhancement of Schottky Junction Silicon Solar Cell with CdSe/ZnS Quantum Dots Decorated Metal Nanostructures

Author:

Nguyen Ha TrangORCID,Tran Thanh Thao,Bhatt Vishwa,Kumar ManjeetORCID,Song Jinwon,Yun Ju-Hyung

Abstract

Recently, in the solar energy society, several key technologies have been reported to meet a grid parity, such as cost-efficient materials, simple processes, and designs. Among them, the assistive plasmonic of metal nanoparticles (MNPs) integrating with the downshifting on luminescent materials attracts much attention. Hereby, Si-based Schottky junction solar cells are fabricated and examined to enhance the performance. CdSe/ZnS quantum dots (QDs) with different gold nanoparticles (Au NPs) sizes were incorporated on a Si light absorbing layer. Due to the light scattering effect from plasmonic resonance, the sole Au NPs layer results in the overall enhancement of Si solar cell’s efficiency in the visible spectrum. However, the back-scattering and high reflectance of Au NPs lead to efficiency loss in the UV region. Therefore, the QDs layer acting as a luminescent downshifter is deployed for further efficiency enhancement. The QDs layer absorbs high-energy photons and re-emits lower energy photons in 528 nm of wavelength. Such a downshift layer can enhance the overall efficiency of Si solar cells due to poor intrinsic spectral response in the UV region. The optical properties of Au NPs and CdSe QDs, along with the electrical properties of solar cells in combination with Au/QD layers, are studied in depth. Moreover, the influence of Au NPs size on the solar cell performance has been investigated. Upon decreasing the diameters of Au NPs, the blueshift of absorbance has been observed, cooperating with QDs, which leads to the improvement of the quantum efficiency in the broadband of the solar spectrum.

Funder

Incheon National University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3