Abstract
Cloud computing systems revolutionized the Internet, and web systems in particular. Quality of service is the basis of resource configuration management in the cloud. Load balancing mechanisms are implemented in order to reduce costs and increase the quality of service. The usage of those methods with adaptive intelligent algorithms can deliver the highest quality of service. In this article, the method of load distribution using neural networks to estimate service times is presented. The discussed and conducted research and experiments include many approaches, among others, application of a single artificial neuron, different structures of the neural networks, and different inputs for the networks. The results of the experiments let us choose a solution that enables effective load distribution in the cloud. The best solution is also compared with other intelligent approaches and distribution methods often used in production systems.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献