A Methodology for Exploiting Smart Prosumers’ Flexibility in a Bottom-Up Aggregation Process

Author:

Arnone Diego,Cacioppo Michele,Ippolito Mariano Giuseppe,Mammina Marzia,Mineo Liliana,Musca Rossano,Zizzo GaetanoORCID

Abstract

The electrical power system is evolving in a way that requires new measures for ensuring its secure and reliable operation. Demand-side aggregation represents one of the more interesting ways to provide ancillary services by the coordinated management of a multitude of different distributed resources. In this framework, aggregators play the main role in ensuring the effectiveness of the coordinated action of the distributed resources, usually becoming mediators in the relation between distribution system operators and smart prosumers. The research project DEMAND recently introduced a new concept in demand-side aggregation by proposing a scheme without a central aggregator where prosumers can share and combine their flexibility with a collaboration–competition mechanism in a platform called Virtual Aggregation Environment (VAE). This paper, after a brief introduction to the DEMAND project, presents the algorithm for the day-ahead estimation of prosumers’ flexibility and the cooperative–competitive algorithm for the bottom-up aggregation. The first algorithm evaluates various couples of power variation and desired remuneration to be sent to the VAE for further elaborations and, for showing its potentiality, is applied to two different case studies: a passive user with only controllable loads and prosumers with controllable loads, photovoltaics and a storage system. The aggregation algorithm is instead discussed in detail, and its performance is evaluated for different population sizes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3