Development of a Pre-Evaluation and Health Monitoring System for FAST Cable-Net Structure

Author:

Shen YuzhouORCID,Luo BinORCID,Jiang Peng,Ding Mingmin,Li Qingwei,Wei YangORCID

Abstract

The Five-hundred-meter Aperture Spherical radio Telescope (FAST) is one of China’s major pieces of national infrastructure. A variable cable-net structure is used as the main supporting structure of the active reflector. The displacement of the cable net works through actuators. The realization of linkage control is a multi-degree-of-freedom and complex coupling control system. Due to factors such as the temperature difference between day and night, as well as actuator failure, the reflector control accuracy and even structural safety are affected during the position-control process of the cable net, so realizing evaluation of control accuracy and fault warning of the reflector is a significant problem. This paper proposes a pre-evaluation and health monitoring system based on advanced mechanical simulation technology. Through this system, on-site staff can expeditiously analyze the model to determine whether the cable net is currently in a safe state, predict the fatigue degree of the components, and maintain the structure when appropriate. The pre-evaluation and health monitoring system adequately ensure the stable functioning of the FAST cable net, improve the efficiency of on-site maintenance work, and markedly reduce the safety risk of the structure.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Jiangsu Province

Natural Science Foundation of Jiangsu Province

six talent peaks project of Jiangsu Province

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3