Hydrodynamics of an Airlift Column for Aeration in Molten Sulfur

Author:

Wang JunjieORCID,Xu Xiao,Wang Wei,Li Yudong,Wu Shihan,Yang Haiqiang,Yang Qiang

Abstract

The airlift column is a promising technology for the removal of volatile gas from high-viscosity molten sulfur. However, a detailed analysis is lacking on the hydrodynamic properties inside the column, due to the difficulty in flow behavior detection in the opaque molten sulfur. In this work, we adopted the computational fluid dynamics simulation to understand the hydrodynamic behaviors in an airlift column for molten sulfur aeration. In addition, we analyzed the impacts of the superficial gas velocity (UGr) and column height on the hydrodynamic characteristics, such as gas holdup, average bubble diameter, and liquid circulation velocity (ULr) in the column. The simulation shows that at a constant column height of 15 m, an increase on gas holdup can be obtained with the increase of the superficial gas velocity, while the bubble diameter remains almost constant. Once the superficial gas velocity exceeded 0.333 m/s, the liquid circulation velocity increased slowly. With a variation on the column height from 5 to 25 m, a negligible change on gas holdup, but an obvious increase on liquid circulation velocity and bubble diameter is observed at the given superficial gas velocity of 0.0389 m/s. Furthermore, the simulation shows a similar trend, but with considerably more detailed information, on the relationship between the gas holdup and liquid circulation velocity when compared to the predictions from the Chisti correlation (1988) and an optimized correlation proposed in this work.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3