Guava Disease Detection Using Deep Convolutional Neural Networks: A Case Study of Guava Plants

Author:

Mostafa Almetwally M.ORCID,Kumar Swarn AvinashORCID,Meraj TalhaORCID,Rauf Hafiz TayyabORCID,Alnuaim Abeer AliORCID,Alkhayyal Maram Abdullah

Abstract

Food production is a growing challenge with the increasing global population. To increase the yield of food production, we need to adopt new biotechnology-based fertilization techniques. Furthermore, we need to improve early prevention steps against plant disease. Guava is an essential fruit in Asian countries such as Pakistan, which is fourth in its production. Several pathological and fungal diseases attack guava plants. Furthermore, postharvest infections might result in significant output losses. A professional opinion is essential for disease analysis due to minor variances in various guava disease symptoms. Farmers’ poor usage of pesticides may result in financial losses due to incorrect diagnosis. Computer-vision-based monitoring is required with developing field guava plants. This research uses a deep convolutional neural network (DCNN)-based data enhancement using color-histogram equalization and the unsharp masking technique to identify different guava plant species. Nine angles from 360∘ were applied to increase the number of transformed plant images. These augmented data were then fed as input into state-of-the-art classification networks. The proposed method was first normalized and preprocessed. A locally collected guava disease dataset from Pakistan was used for the experimental evaluation. The proposed study uses five neural network structures, AlexNet, SqueezeNet, GoogLeNet, ResNet-50, and ResNet-101, to identify different guava plant species. The experimental results proved that ResNet-101 obtained the highest classification results, with 97.74% accuracy.

Funder

King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3