Abstract
This paper presents a modeling and solution approach to the static and multistage transmission network expansion planning problem considering series capacitive compensation and active power losses. The transmission network expansion planning is formulated as a mixed integer nonlinear programming problem and solved through a highly efficient genetic algorithm. Furthermore, the Villasana Garver’s constructive heuristic algorithm is implemented to render the configurations of the genetic algorithm feasible. The installation of series capacitive compensation devices is carried out with the aim of modifying the reactance of the original circuit. The linearization of active power losses is done through piecewise linear functions. The proposed model was implemented in C++ language programming. To show the applicability and effectiveness of the proposed methodology several tests are performed on the 6-bus Garver system, the IEEE 24-bus test system, and the South Brazilian 46-bus test system, presenting costs reductions in their multi-stage expansion planning of 7.4%, 4.65% and 1.74%, respectively.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献