Evaluating the Design Criteria for Light Embankment Piling: Timber Piles in Road and Railway Foundations

Author:

Gunnvard PerORCID,Mattsson HansORCID,Laue JanORCID

Abstract

Three-dimensional finite element (FE) simulations were performed to further develop the Swedish design guidelines for geogrid-reinforced timber pile-supported embankments, also known as lightly piled embankments. Lightly piled embankments are constructed mainly in areas which typically have highly compressible soils, and the method utilises untreated timber piles as its key feature. The timber piles are installed in a triangular arrangement instead of the more common square arrangement, with a centre-to-centre distance of 0.8–1.2 m. The aim of this study was to evaluate the current standard using FE modelling setups with square and triangular pile arrangements with varying centre-to-centre distances, based on a typical road foundation case. The evaluation mainly focused on comparing the embankment settlements, as well as the load and stress distribution in the embankment, the piles and the geosynthetic reinforcement. As part of the evaluation, a state-of-the-art study was done on international design guidelines and analytical models. From the FE simulations, no evident difference in mechanical behaviour was found between the triangular and square piling patterns. The maximum allowed centre-to-centre distance between piles can potentially be increased to 1.4 m, decreasing the number of piles by as much as one third.

Funder

Branschsamverkan i Grunden

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Timber Piles and Foundations, BRE Digest 479;Reynolds,2003

2. Introduction to the Comparative Project

3. Design Criterion of Reinforcement on Thick Soft Clay Foundations of Traditional Construction Method in Indonesia

4. Theoretical Soil Mechanics;Terzaghi,1943

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3