An Efficient Data-Balancing Cyber-Physical System Paradigm for Quality-of-Service (QoS) Provision over Fog Computing

Author:

Almiani Muder,Razaque Abdul,Alotaibi BandarORCID,Alotaibi MunifORCID,Amanzholova Saule,Alotaibi AzizORCID

Abstract

Cyber-physical systems (CPSs) have greatly contributed to many applications. A CPS is capable of integrating physical and computational capabilities to interact with individuals through various new modalities. However, there is a need for such a paradigm to focus on the human central nervous system to provide faster data access. This paper introduces the CPS paradigm that consists of CPS enabled human brain monitoring (CPS-HBM) and efficient data-balancing for CPS (EDB-CPS). The CPS-HBM provides architectural support to make an efficient and secure transfer and storage of the sensed data over fog cloud computing. The CPS-HBM consists of four components: physical domain and data processing (PDDP), brain sensor network (BSN), Service-oriented architecture (SOA), and data management domain (DMD). The EDB-CPS module aims to balance data flow for obtaining better throughput and lower hop-to-hop delay. The EDB-CPS accomplishes the goal by employing three processes: A node advertisement (NA), A node selection and recruitment (NSR), and optimal distance determination with mid-point (ODDMP). The processes of the EDB-CPS are performed on the PDDP of the CPS-HBM module. Thus, to determine the validity of EDB-CPS, the paradigm was programmed with C++ and implemented on a network simulator-3 (NS3). Finally, the performance of the proposed EDB-CPS was compared with state-of-the-art methods in terms of hop-to-hop delay and throughput. The proposed EDB-CPS produced better throughput between 443.2–445.2 KB/s and 0.05–0.078 ms hop-to-hop delay.

Funder

Taif University

the Sensors Networks and Cellular Systems (SNCS) Research Center

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3