A Perturbation Approach for Lateral Excited Vibrations of a Beam-like Viscoelastic Microstructure Using the Nonlocal Theory

Author:

Li Cheng,Zhu Chengxiu,Sui Suihan,Yan Jianwei

Abstract

In this paper, we investigate the lateral vibration of fully clamped beam-like microstructures subjected to an external transverse harmonic excitation. Eringen’s nonlocal theory is applied, and the viscoelasticity of materials is considered. Hence, the small-scale effect and viscoelastic properties are adopted in the higher-order mathematical model. The classical stress and classical bending moments in mechanics of materials are unavailable when modeling a microstructure, and, accordingly, they are substituted for the corresponding effective nonlocal quantities proposed in the nonlocal stress theory. Owing to an axial elongation, the nonlinear partial differential equation that governs the lateral motion of beam-like viscoelastic microstructures is derived using a geometric, kinematical, and dynamic analysis. In the next step, the ordinary differential equations are obtained, and the time-dependent lateral displacement is determined via a perturbation method. The effects of external excitation amplitude on excited vibration are presented, and the relations between the nonlocal parameter, viscoelastic damping, detuning parameter, and the forced amplitude are discussed. Some dynamic phenomena in the excited vibration are revealed, and these have reference significance to the dynamic design and optimization of beam-like viscoelastic microstructures.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3