Abstract
In recent years, Internet of Things (IoT for short) research has become one of the top ten most popular research topics. IoT devices also embed many sensing chips for detecting physical signals from the outside environment. In the wireless sensing network (WSN for short), a human can wear several IoT devices around her/his body such as a smart watch, smart band, smart glasses, etc. These IoT devices can collect analog environment data around the user’s body and store these data into memory after data processing. Thus far, we have discovered that some IoT devices have resource limitations such as power shortages or insufficient memory for data computation and preservation. An IoT device such as a smart band attempts to upload a user’s body information to the cloud server by adopting the public-key crypto-system to generate the corresponding cipher-text and related signature for concrete data security; in this situation, the computation time increases linearly and the device can run out of memory, which is inconvenient for users. For this reason, we consider that, if the smart IoT device can perform encryption and signature simultaneously, it can save significant resources for the execution of other applications. As a result, our approach is to design an efficient, practical, and lightweight, blind sign-cryption (SC for short) scheme for IoT device usage. Not only can our methodology offer the sensed data privacy protection efficiently, but it is also fit for the above application scenario with limited resource conditions such as battery shortage or less memory space in the IoT device network.
Funder
Ministry of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献