Experimental Approach for the Failure Mode of Small Laminated Rubber Bearings for Seismic Isolation of Nuclear Components

Author:

Ma Sang-Jin,Shin Tae-Myung,Ryu Ju-Seung,Lee Jin-Hyeong,Koo Gyeong-Hoi

Abstract

Response characteristics of small-sized laminated rubber bearings (LRBs) with partial damage and total failure were investigated. For nuclear component seismic isolation, ultimate response characteristics are mainly reviewed using a beyond design basis earthquake (BDBE). Static tests, 3D shaking table tests, and verification analyses were performed using optional LRB design prototypes. During the static test, the hysteresis curve behavior from buckling to potential damage was observed by applying excessive shear deformation. The damaged rubber surface of the laminated section inside the LRB was checked through water jet cutting. A stress review by response spectrum analysis was performed to simulate the dynamic tests and predict seismic inputs’ intensity level that triggers LRB damage. Shaking table tests were executed to determine seismic response characteristics with partial damage and to confirm the stability of the superstructure when the supporting LRBs completely fail. Shear buckling in LRBs by high levels of BDBE may be quickly initiated via partial damage or total failure by the addition of torsional or rotational behavior caused by a change in the dynamic characteristics. Furthermore, the maximum seismic displacement can be limited within the range of the design interface due to the successive slip behavior, even during total LRB failure.

Funder

the Ministry of Trade, Industry, and Energy through KETEP

Korea National University of Transportation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3