Benefits of Advanced Air Mobility for Society and Environment: A Case Study of Ohio

Author:

Dulia Esrat F.,Sabuj Mir S.ORCID,Shihab Syed A. M.ORCID

Abstract

Advanced Air Mobility (AAM) is an emerging transportation system that will enable the safe and efficient low altitude operations and applications of unmanned aircraft (e.g., passenger transportation and cargo delivery) in the national airspace. This system is currently under active research and development by NASA in collaboration with FAA, other federal partner agencies, industry, and academia to develop its infrastructure, information architecture, software functions, concepts of operation, operations management tools and other functional components. Existing studies have, however, not thoroughly analyzed the net positive impact of AAM on society and environment to justify investments in its infrastructure and implementation. In this work, we fill this gap by evaluating the non-monetary social impact of AAM in the state of Ohio for passengers, patients, farmers, logistics companies and their customers and bridge inspection entities, as well as its environmental impact, by conducting a thorough data-driven quantitative cost–benefit analysis of AAM from the perspective of the state government. To this end, the most relevant and significant benefit and cost factors are identified, monetized, and estimated. Existing ground transportation for the movement of passengers and goods within and across urban areas is considered as the base case. The findings demonstrate that AAM’s benefits are large and varied, far outweighing its costs. Insights on these benefits can help gain community acceptance of AAM, which is critical for successful implementation of AAM. The findings support decision-making for policymakers and provide justification for investments in AAM infrastructure by the government and private sector.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3