Quantitative Geochemical Prediction from Spectral Measurements and Its Application to Spatially Dispersed Spectral Data

Author:

Rodger AndrewORCID,Laukamp CarstenORCID

Abstract

The efficacy of predicting geochemical parameters with a 2-chain workflow using spectral data as the initial input is evaluated. Spectral measurements spanning the approximate 400–25000 nm spectral range are used to train a workflow consisting of a non-negative matrix function (NMF) step, for data reduction, and a random forest regression (RFR) to predict eight geochemical parameters. Approximately 175,000 spectra with their corresponding chemical analysis were available for training, testing and validation purposes. The samples and their spectral and chemical parameters represent 9399 drillcore. Of those, approximately 20,000 spectra and their accompanying analysis were used for training and 5000 for model validation. The remaining pairwise data (150,000 samples) were used for testing of the method. The data are distributed over two large spatial extents (980 km2 and 3025 km2, respectively) and allowed the proposed method to be tested against samples that are spatially distant from the initial training points. Global R2 scores and wt.% RMSE on the 150,000 validation samples are Fe (0.95/3.01), SiO2 (0.96/3.77), Al2O3 (0.92/1.27), TiO (0.68/0.13), CaO (0.89/0.41), MgO (0.87/0.35), K2O (0.65/0.21) and LOI (0.90/1.14), given as Parameter (R2/RMSE), and demonstrate that the proposed method is capable of predicting the eight parameters and is stable enough, in the environment tested, to extend beyond the training sets initial spatial location.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands

2. Near infrared spectra of muscovite, Tschermak substitution, and metamorphic reaction progress: Implications for remote sensing

3. Mineral Mapping Queensland: Iron Oxide Copper Gold (IOCG) Mineral System Case History, Starra, Mount Isa Inlier;Cudahy,2008

4. Next Generation Mineral Mapping: Queensland Airborne HyMap and Satellite ASTER Surveys 2006–2008;Cudahy,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3