A New Calculation Method of Cutterhead Torque Considering Shield Rolling Angle

Author:

Shen Xiang,Yuan Dajun,Jin Dalong,Cao ChengyongORCID

Abstract

The existing cutterhead torque calculation method usually simplifies the characteristics of the shield, which ignores the rolling angle. In this paper, the cross-river shield project of Wuhan Metro Line 8 is taken as the research focus. Firstly, the measured data of the cutterhead torque (CT), the rolling angle and rotation direction were analyzed. Then on this basis, the penetrability, tunneling thrust, and rolling angle were taken as the influential factors to analyze CT sensitivity. Finally, based on the theoretical calculation model, a modified solution of CT was obtained considering the rolling angle. The results show that the rolling angle can be reduced to zero by changing the direction of the cutterhead rotation; the rolling angle has a greater impact on CT than the other two factors as shown through the analysis of the range difference and Statistical Product and Service Solutions (SPSS) method. As the absolute value of the rolling angle increases, CT also increases, and the relationship between them is linear. To a certain extent, the rolling angle of the shield can reflect the difficulty of tunneling and the running status. By monitoring the rolling angle of the shield, the prediction of CT can be more in line with the actual construction conditions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of rock macro-indentation: Theories, experiments, simulations, and applications;Journal of Rock Mechanics and Geotechnical Engineering;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3