Abstract
It is important and difficult to improve the tensile strength of backfill material to ensure the stability of goafs. In this study, rice straw (RS) in fiber form is used to improve the tensile properties of cemented paste backfill (CPB). An orthogonal experiment was designed, Brazilian indirect tensile strength tests were conducted to test the tensile performance of RS fiber-reinforced cemented paste backfill (RSCPB) under different fiber content (1, 2, 3 kg/m3) and fiber length (0.8~1, 1~3, 3~5 cm), and the microstructure of RSCPB was analyzed with scanning electron microscopy (SEM). The results showed that, compared with the conventional cemented paste backfill (CCPB), the increase in tensile strength of RSCPB ranged from 115.38% to 300.00% at 3 days curing age, 40.91% to 346.15% at 7 days, and −38.10% to 28.00% at 28 days, and the strain was slightly reduced during the curing period. The tensile strength, strain, and percentage increase of the RSCPB compared to the CCBP did not show a monotonic pattern of variation with the RS fiber content and length during the curing period. The RSCPB samples fractured under peak stress, showing obvious brittle failure. In addition, sulfate generated from S2− in the tailings inhibits the hydration reaction, and generates swelling products that form weak structural surfaces, which, in turn, lead to a 28-day tensile strength and strain of RSCPB lower than those at 7 days.
Funder
National Natural Science Foundation Project of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献