Abstract
Fire is a major decay agent of rocks and can generate immediate catastrophic effects as well as directional and anisotropic damage that affect long-term weathering processes. Temperature increase is the most relevant factor, among other components in a fire, generating mineral transformations and bulk mechanical damage. Mineralogical changes at high temperatures are key to understanding the overall mechanical behaviour. However, most studies to date were carried out after rock specimens were heated to a target temperature and cooled down to room temperature. Therefore, these studies are missing the observation of the actual mineral processes during heating. This paper aims to compare mineralogical changes in crystalline rocks during heating by means of XPS and different XRD techniques. Samples of four different granitoids were heated to several temperatures up to 1000 °C to evaluate their chemical and structural changes. Results show how standardised thermal expansion coefficients are not a suitable indicator of the bulk effect of high temperatures on rocks. Results also show how thermal expansion estimations from XRD lattice measurements may be an alternative to bulk dilatometric tests, as they can be performed with limited sampling, which may be necessary in some studies. Nevertheless, XRD and XPS results need to be interpreted carefully in relation to the bulk effects of temperature increase in the rocks, as the structural behaviour may seemingly contradict the macroscopic effect.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献