Effect of Impact and Bearing Parameters on Bird Strike with Aero-Engine Fan Blades

Author:

Wu Bin,Hedayati RezaORCID,Li Zhehua,Aghajanpour Mahsa,Zhang Guichang,Zhang Junhong,Lin JieweiORCID

Abstract

Bird strikes are one of the most dangerous incidents occurring to aircraft engines and can inflict heavy casualties and economic losses. In this study, a smoothed particle hydrodynamics (SPH) mallard bird model has been used to simulate bird impact to rotary aero-engine fan blades. The simulations were performed using the finite element method (FEM) by means of LS-DYNA. The reliability of the material model and numerical method was verified by comparing the numerical results with Wilbeck’s experimental results. The effects of impact and bearing parameters, including bird impact location, bird impact orientation, initial bird velocity, fan rotational speed, stiffness of the bearing, and the damping of the bearing on the bird impact to aero-engine fan blade are studied and discussed. The results show that both the impact location and bird orientation have significant effects on the bird strike results. Bird impact to blade roots is the most dangerous scenario causing the impact force to reach 390 kN. The most dangerous orientation is the case where the bird’s head is tilted 45° horizontally, which leads to huge fan kinetic energy loss as high as 64.73 kJ. The bird’s initial velocity affects blade deformations. The von Mises stress during the bird strike process can reach 1238 MPa for an initial bird velocity of 225 m/s. The fan’s rotational speed and the bearing stiffness affect the rotor stability significantly. The value of bearing damping has little effect on the bird strike process. This paper presents a procedure for evaluating the strength of fan blades against bird strike in the design stage.

Funder

Joint Funds of National Science Foundation of China and Civil Aviation Administration Foun-dation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3