Abstract
This article discusses the assessment of groundwater quality using a hybrid technique that would aid in the convenience of groundwater (GW) quality monitoring. Twenty eight (28) GW samples representing 62 barangays in Calapan City, Oriental Mindoro, Philippines were analyzed for their physicochemical characteristics and heavy metal (HM) concentrations. The 28 GW samples were collected at suburban sites identified by the coordinates produced by Global Positioning System Montana 680. The analysis of heavy metal concentrations was conducted onsite using portable handheld X-Ray Fluorescence (pXRF) Spectrometry. Hybrid machine learning—geostatistical interpolation (MLGI) method, specific to neural network particle swarm optimization with Empirical Bayesian Kriging (NN-PSO+EBK), was employed for data integration, GW quality spatial assessment and monitoring. Spatial map of metals concentration was produced using the NN-PSO-EBK. Another, spot map was created for observed metals concentration and was compared to the spatial maps. Results showed that the created maps recorded significant results based on its MSEs with values such as 1.404 × 10−4, 5.42 × 10−5, 6.26 × 10−4, 3.7 × 10−6, 4.141 × 10−4 for Ba, Cu, Fe, Mn, Zn, respectively. Also, cross-validation of the observed and predicted values resulted to R values range within 0.934–0.994 which means almost accurate. Based on these results, it can be stated that the technique is efficient for groundwater quality monitoring. Utilization of this technique could be useful in regular and efficient GW quality monitoring.
Funder
Department of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献