Author:
Zhou Shujun,Yan Tingyan,Muneer Waqas,Yin Xuan,Gao Qiyu,Zhan Xiaohong
Abstract
Laser-MIG hybrid multi-layer welding (LMHMW) technology has been employed in paraxial configuration with laser leading for the welding of 20 mm thick Q235 carbon steel plates to exploit the hybridization effect that addresses the shortcomings of the individual process as well as to compliment their merits. The bilateral effects of arc augmented laser welding have resulted in complete joint penetration, process efficiency, stability and gap bridge ability. Samples welded under varying heat inputs in multiple passes have been analyzed for their microstructure evaluation using an optical microscope followed by tensile and Vickers hardness testing in various regions of the weld zones. This process was conducted to characterize the effect of heat input on the mechanical properties of the welded joints. The experimental results illustrate that different heat inputs have significant effects on the microstructure, heat affected zone width and mechanical properties of welded joints. The microhardness near the fusion line decreases dramatically due to the influence of the phase transformation process, and the highest microhardness value is obtained in the center of the weld seam. By using reasonable process parameters, the strength of the welded joint can obtain 458.5 MPa.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science