No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion

Author:

Varga DomonkosORCID

Abstract

No-reference image quality assessment (NR-IQA) has always been a difficult research problem because digital images may suffer very diverse types of distortions and their contents are extremely various. Moreover, IQA is also a very hot topic in the research community since the number and role of digital images in everyday life is continuously growing. Recently, a huge amount of effort has been devoted to exploiting convolutional neural networks and other deep learning techniques for no-reference image quality assessment. Since deep learning relies on a massive amount of labeled data, utilizing pretrained networks has become very popular in the literature. In this study, we introduce a novel, deep learning-based NR-IQA architecture that relies on the decision fusion of multiple image quality scores coming from different types of convolutional neural networks. The main idea behind this scheme is that a diverse set of different types of networks is able to better characterize authentic image distortions than a single network. The experimental results show that our method can effectively estimate perceptual image quality on four large IQA benchmark databases containing either authentic or artificial distortions. These results are also confirmed in significance and cross database tests.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference83 articles.

1. Handbook of Image Quality: Characterization and Prediction;Keelan,2002

2. Perceptual Image Quality Assessment for Various Viewing Conditions and Display Systems

3. KonIQ-10K: Towards an ecologically valid and large-scale IQA database;Lin;arXiv,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3