Abstract
This research aims at evaluating the performance of a combined system of biochar gasification and a sorption-enhanced water–gas shift reaction (SEWGS) for synthesis gas production. The effects of mangrove-derived biochar gasification temperature, pattern of combined gasification and SEWGS, amount of steam and CO2 added as gasifying agent, and SEWGS temperature were studied in this work. The performances of the combined process were examined in terms of biochar conversion, gaseous product composition, and CO2 emission. The results revealed that the hybrid SEWGS using one-body multi-functional material offered a greater amount of H2 with a similar amount of CO2 emissions when compared with separated sorbent/catalyst material. The gasification temperature of 900 °C provided the highest biochar conversion of ca. 98.7%. Synthesis gas production was found to depend upon the amount of water and CO2 added and SEWGS temperature. Higher amounts of H2 were observed when increasing the amount of water and the temperature of the SEWGS system.
Funder
Ratchadapisek Sompoch Endowment Fund 2016 Chulalongkorn Universit
King Mongkut's University of Technology North Bangkok
National Science and Technology Development Agency (NSTDA).
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献