Early Treatment with a Slow Maxillary Ni–Ti Leaf Springs Expander

Author:

Vella Massimiliano,Cressoni Paolo,Tripicchio Cinzia,Mainardi Eleonora,Esposito Luca

Abstract

The aim of this brief report is to analyse the available literature on the clinical outcomes of a particular appliance for slow maxillary expansion that consists of one or more nickel–titanium springs. Materials and methods: The main medical databases (Scopus, Web of Sciences, Pubmed and Google Scholar) were scanned up to January 2020 using “slow maxillary expan*”, “slow palatal expan*”, “leaf expander” and “NiTi Palatal Expander” as keywords. Skeletal changes in the maxilla after expansion with the Leaf Expander (L.E.) or similar appliances were taken into consideration while reviewing relevant manuscripts. The review focuses on the comparison between the L.E. and conventional expanders (i.e., Haas and Hyrax) regarding the increase in both the distance between the palatal cusps of the upper first molars and the distance between the palatal cusps of the upper second deciduous molars, as well as the increment of nasal structures and pain connected to expansion procedures. Results: Bibliographic research retrieved 32 articles that were considered eligible for the present study. The limited number of articles currently available in international medical databases is allegedly partly due to the fact that these expanders are currently produced by only one patent holder company, which affects its diffusion. Conclusion: Despite the reduced number of published articles, due to the recent introduction of the L.E. device, most of the authors have found that the effects of the L.E. device are clinically and radiographically comparable to those achievable with the rapid palatal expander.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3