Abstract
With the development of wireless sensor network technology, the routing strategy has important significance in the Internet of Things. An efficient routing strategy is one of the fundamental technologies to ensure the correct and fast transmission of wireless sensor networks. In this paper, we study how to combine deep learning technology with routing technology to propose an efficient routing strategy to cope with network topology changes. First, we use the recurrent neural network combined with the deep deterministic policy gradient method to predict the network traffic distribution. Second, the multi-hop node state is considered as the input of a double deep Q network. Therefore, the nodes can make routing decisions according to the current state of the network. Multi-hop state-aware routing strategy based on traffic flow forecasting (MHSA-TFF) is proposed. Simulation results show that the MHSA-TFF can improve transmission delay, average routing length, and energy efficiency.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献