Dynamic Markov Model: Password Guessing Using Probability Adjustment Method

Author:

Guo XiaozhouORCID,Liu Yi,Tan Kaijun,Mao WenyuORCID,Jin Min,Lu Huaxiang

Abstract

In password guessing, the Markov model is still widely used due to its simple structure and fast inference speed. However, the Markov model based on random sampling to generate passwords has the problem of a high repetition rate, which leads to a low cover rate. The model based on enumeration has a lower cover rate for high-probability passwords, and it is a deterministic algorithm that always generates the same passwords in the same order, making it vulnerable to attack. We design a dynamic distribution mechanism based on the random sampling method. This mechanism enables the probability distribution of passwords to be dynamically adjusted and tend toward uniform distribution strictly during the generation process. We apply the dynamic distribution mechanism to the Markov model and propose a dynamic Markov model. Through comparative experiments on the RockYou dataset, we set the optimal adjustment degree α. Compared with the Markov model without the dynamic distribution mechanism, the dynamic Markov model reduced the repetition rate from 75.88% to 66.50% and increased the cover rate from 37.65% to 43.49%. In addition, the dynamic Markov model had the highest cover rate for high-probability passwords. Finally, the model avoided the lack of a deterministic algorithm, and when it was run five times, it reached almost the same cover rate as OMEN.

Funder

CAS Strategic Leading Science and Technology Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KeySign: WiFi-Based Authentication Using Keystroke Signatures;2023 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI);2023-12-15

2. A Systematic Review on Password Guessing Tasks;Entropy;2023-09-07

3. LPG–PCFG: An Improved Probabilistic Context- Free Grammar to Hit Low-Probability Passwords;Sensors;2022-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3