Abstract
The prediction of sport event results has always drawn attention from a vast variety of different groups of people, such as club managers, coaches, betting companies, and the general population. The specific nature of each sport has an important role in the adaption of various predictive techniques founded on different mathematical and statistical models. In this paper, a common approach of modeling sports with a strongly defined structure and a rigid scoring system that relies on an assumption of independent and identical point distributions is challenged. It is demonstrated that such models can be improved by introducing dynamics into the match models in the form of sport momentums. Formal mathematical models for implementing these momentums based on conditional probability and empirical Bayes estimation are proposed, which are ultimately combined through a unifying hybrid approach based on the Monte Carlo simulation. Finally, the method is applied to real-life volleyball data demonstrating noticeable improvements over the previous approaches when it comes to predicting match outcomes. The method can be implemented into an expert system to obtain insight into the performance of players at different stages of the match or to study field scenarios that may arise under different circumstances.
Funder
European Regional Development Fund - DATACROSS
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Machine Learning Based Momentum Prediction Model for Tennis Matches;2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC);2024-05-24
2. Special Issue on ‘Computer Science in Sport’;Applied Sciences;2022-08-11
3. A combinatorial approach in predicting the outcome of tennis matches;International Journal of Applied Mathematics and Computer Science;2021